You Eat Corn? I Make Microfluidics with It

Recasting Renewable Resources

Some of us are on the search for new renewable materials that can make our lifestyle a bit more sustainable. Although a new resource may be renewable, that doesn’t mean it makes sense to use. For example, many people went crazy over corn-based ethanol because it would eliminate (or at least reduce) America’s dependence on foreign oil. America is the world’s largest producer of corn, but that’s for a reason; we use it for a lot of things already. By diverting a percentage of corn production towards ethanol, we shook up our corn economy, and not necessarily for the better. Yet we find ourselves looking to corn again, but this time as an alternate material for microfluidics. Gang Logan Liu et al. have presented us with a new method for corn-based microfabrication in "Green microfluidic devices made of corn proteins". The group from the University of Illinois Urbana-Champagne uses the protein zein, which is actually a byproduct of ethanol production. An existing product previously treated as waste now has the promise of new value; this is exactly what we’re looking for as a green resource.

Not only would this corn-based device be renewable, its disposal would also be more environmentally friendly. The authors stress that this is important in sectors that perform a high number of tests. This could be particularly important for agriculture, which needs to constantly test for pollutants and diseases (it would also give a nice ‘full circle’ type feeling). I’m normally more interested in medical applications for microfluidics, but there are a ton of areas that run chemical tests that can be optimized.

Zein Film Creation

This is not the first time Zein has been examined as a viable resource; it has been studied for use in coatings, adhesives, food packaging, drug and functional food delivery systems. Zein is a good candidate for microfluidics because it resembles a rod, and self-organizes with other rods into a two-dimensional film. The authors employed a soft lithography fabrication process using PDMS as a master. Once a single layer was molded, the authors examined binding processes with glass slides as well as other zein layers. While it is conceivable that someone would want to use a glass-zein or zein-zein device, it is also necessary to test it with glass because zein is opaque and prevents us from visually evaluating how well it functions.

Zein Film Attachment

Zein film is prepared via soft lithography, using PDMS as a master. It is sealed to another surface by applying it to ethanol solvent or vapor.

Zein film is prepared via soft lithography, using PDMS as a master. It is sealed to another surface by applying it to ethanol solvent or vapor.

Two methods for attachment were considered: solvent and vapor deposition. Both methods involve heating the surfaces and coating with ethanol before mating the sides. In solvent deposition, the zein side is placed on an ethanol-coated surface to pick up a thin layer before sealing. In vapor deposition, the zein side is exposed to ethanol vapor before sealing. The process of heating and exposing to ethanol allows the zein to become more mobile as well as crosslink with either the opposing zein surface or the micro voids in the glass.

Zein Microfabrication Results

The authors tested the zein-structures in a couple different ways, but they basically boiled down to how well the channels were replicated, sealed and able to allow for normal microfluidics operations. The resulting channels deviated slightly from the master, which could be rectified by reducing the elasticity of the PDMS or changing the zein film thickness. When comparing the solvent and vapor depositions, reliable results were obtained using the vapor. When the solvent was deposited, evidently extra ethanol was transferred to the zein film, distorting the geometry of the channels. While the authors demonstrated that zein sealed well, they did note that it is a somewhat permeable material, and this could be manipulated in some controlled way. Also of note is the fact that zein autofluoresces. Zein is excited using wavelengths from 450 to 490 nm, resulting in excitation emissions at 550 nm to 580 nm. While this doesn’t line up with the properties of Green Fluorescent Protein, it might align with others, making fluorescent detection a bit harder.

I think that the use of zein is promising. It utilizes a renewable material in a new way that gives value to a pre-existing process. Not only is zein renewable, but it is biodegradable, which will answer one of the problems that will surely arise when microfluidic devices have worked their way into mass production. I think we’ll have to see what complicated structures can be created with zein and what solvents really shouldn’t be used.

Reference:

ResearchBlogging.org

Luecha, J., Hsiao, A., Brodsky, S., Liu, G., & Kokini, J. (2011). Green microfluidic devices made of corn proteins Lab on a Chip, 11 (20) DOI: 10.1039/C1LC20726A

PDMS: The Favorite Material of Microfluidics (for now)

Precise microfluidic channel in PDMS

Precise microfluidic channel in PDMS

Whether you’ve been learning about microfluidics here at Microfluidic Future or somewhere else, you’ve undoubtedly come across the elastomer poly(dimethylsiloxane) (PDMS). PDMS has radically changed the capabilities of microfluidics (and its price tag) since it was first brought into microfluidics by George Whitesides in 1998. PDMS has effectively replaced glass and silicon which were borrowed from existing micromachining industries. PDMS has great resolution and can contain sub-0.1 µm features. But how is PDMS used, and what makes it so great? Hopefully you’ll have these answers by the end of this post.

PDMS Fabrication

PDMS fabrication process, beginning with photolithography

PDMS fabrication process, beginning with photolithography

Soft lithography is a widely used technique to create PDMS structures. This process first requires a mold, or a master, generally produced by photolithography. The mold must represent the hollow space of the microfluidic chip, where the fluids will eventually flow. PDMS is formed by mixing one component which contains silicon hydride groups and another component which contains a vinyl group. This mixture is then poured on top of the master. PDMS cures to a solid after an hour at 70o C, and can then be peeled away from the master without damage to either part, allowing the master mold to be reused. The earlier steps can be completed within 24 hours, and replicas can be mass produced after designing and creating a master.

After removing the PDMS replica, we have an open space in the structure from the master, but our channels have no bottom! We next have to seal the PDMS to another surface, such as glass, silicon, or itself. More importantly, PDMS can be sealed reversibly or irreversibly.

Van der Waals forces allow reversible sealing to smooth surfaces. This seal is airtight, but can only withstand pressures around 5 psi. Adhesive silicone or cellophane tapes can also be used to create a reversibly seal that is stronger than PDMS alone. Reversible seals allow for reuse or added functionality. Remember that the PDMS used in the SIMBAS lab-on-a-chip was sealed reversibly to the glass, allowing reuse or future analysis.

In some cases, a lab-on-a-chip may require an irreversible seal, especially if operating under higher pressures. PDMS can be irreversibly sealed by exposing it (and possibly the other surface) to oxygen plasma. However, the two pieces of chip must be aligned within a minute or else the oxidized PDMS surface will reconstruct in the air.

Complex PDMS structure "sandwiching" a membrane between two layers

Complex PDMS structure "sandwiching" a membrane between two layers

Complex structures can be created by “sandwiching” multiple layers of PDMS. Furthermore, additional components like membranes can be included in this sandwich. This can be a bit of a challenge depending on the complexity of the features, and micro-stages have been created to ensure perfect alignment after oxidation. Alternatively, PDMS can be sealed with the aid of polar solvents. A thin film of a polar solvent is placed between PDMS layers and then heated, evaporating the solvent and sealing the layers.

Instead of using photolithography to create the mold, 3D printing can also be used. 3D printing prints small globules of material according to a CAD file to make 3D structures. 3D printing itself has been growing in capabilities due to its extremely quick prototyping speed. It can achieve a resolution between 50 and 100 µm, which is suitable for microfluidic devices. This mold would then be used in the same way to create PDMS replicas.

Microfluidic Components

Microfluidic chips can be very complex, featuring pumps, valves and mixers. These parts can easily be implemented in a PDMS structure. Mixers can be incorporated into the masters, transferring them to the floor of a channel. Other parts that are made separately, like some of the microvalves I discussed previously, can be placed in the PDMS while curing. This allows a single master to be very versatile while moving independent features about the device.

Key Features

Here are some key features of PDMS adapted from “Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices” by Whitesides.

Property

Characteristic

Consequence

Optical

transparent; UV cutoff, 240 nm

optical detection from 240 to 1100 nm

Electrical

insulating; breakdown voltage,

2 x 107 V/m

allows embedded circuits; intentional breakdown to open connections

Mechanical

elastomeric; tunable Young's modulus, typical value of

~750 kPa

conforms to surfaces; allows actuation by reversible deformation; facilitates release from molds

Thermal

insulating; thermal conductivity, 0.2 W/(m*K); coefficient of thermal expansion, 310 µm/(m*°C)

can be used to insulate heated solutions; does not allow dissipation of resistive heating from electrophoretic separation

Interfacial

low surface free energy

~20 erg/cm

replicas release easily from molds; can be reversibly sealed to materials

Permeability

impermeable to liquid water; permeable to gases and nonpolar organic solvents

contains aqueous solutions in channels; allows gas transport through bulk material; incompatible with many organic solvents

Reactivity

inert; can be oxidized by exposure to plasma

unreactive toward most reagents; surface can be etched; can be modified to be hydrophilic and also reactive toward silanes; etching can alter topography of surfaces

Toxicity

nontoxic

can be implanted in vivo; supports mammalian cell growth

Some clear advantages and unique properties can be seen from this table. I would also like to point out some additional advantages and disadvantages.

Advantages

  • Quicker production time than glass and silicon microfluidic chips
  • Cheaper than glass and silicon

Disadvantages

  • Unless oxidized or treated, the surface of PDMS is hydrophobic which can encourage air bubbles to form in channels and protein adsorption
  • Elasticity restricts aspect ratio of structures as sagging/shrinking can occur.

 This is one part of my Microfluidics Beginer’s Guide. Check out the rest of it and keep learning!

Reference:

ResearchBlogging.org McDonald, J., & Whitesides, G. (2002). Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices Accounts of Chemical Research, 35 (7), 491-499 DOI: 10.1021/ar010110q